Synergistic antitumor effect of adenovirus armed with Drosophila melanogaster deoxyribonucleoside kinase and nucleoside analogs for human breast carcinoma in vitro and in vivo

نویسندگان

  • Miao Tang
  • Cong Zu
  • Anning He
  • Wenqian Wang
  • Bo Chen
  • Xinyu Zheng
چکیده

BACKGROUND Suicide gene therapy in cancer can selectively kill tumors without damaging normal tissues. Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK), an original suicide kinase, makes use of the carcinomatous suicide gene therapy for broader substrate specificity and a higher catalytic rate. METHODS To enhance the anti-tumor efficacy of Dm-dNK and maintain its substrate specificity and safety control in the meantime, the conditionally replicative gene-viral system, ZD55-dNK (which contains the selective replication adenovirus, ZD55, encoded with Dm-dNK), was investigated in pushing a deeper development of this strategy. Selective replication, cell killing efficacy, and cytotoxicity, in combination with chemotherapy, were applied to two breast cell lines (MDA231 and MCF7 cells), two normal cell lines (WI38 and MRC5 cells), and the MCF7 xenograft model in vivo. RESULTS The preclinical study showed that ZD55-dNK, combined with 2',2'-difluorodeoxycytidine (DFDC), synergistically inhibited adenovirus replication in vitro but maintained specifically cancer cell killing efficacy. ZD55-dNK also greatly improved the antineoplastic effect in vitro and in breast cancer xenograft in vivo. CONCLUSION The concomitant use of ZD55-dNK and DFDC is possibly a novel and promising approach to breast cancer treatment, and further investigation on the safe control of excessive virus replication and the efficacy of this approach in humans is warranted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antitumor effects of oncolytic adenovirus armed with Drosophila melanogaster deoxyribonucleoside kinase in colorectal cancer.

Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) was applied as a cancer gene therapeutic approach. To improve the antitumor effect of Dm-dNK, a novel suicide gene system based on an oncolytic adenovirus vector was developed to produce therapeutic effects towards colorectal cancer cells. We constructed an oncolytic adenov...

متن کامل

Cytotoxic effects of adenovirus- and lentivirus-mediated expression of Drosophila melanogaster deoxyribonucleoside kinase on Bcap37 breast cancer cells.

Gene transfer using different viral vectors has demonstrated different antitumor effects in suicide gene therapy. In the present study, in order to optimize the efficacy of replication-defective adenoviral and lentiviral vectors for gene therapy, RT-PCR was used to evaluate the expression of Drosophila melanogaster deoxyribonucleoside kinase (Dm-d...

متن کامل

Bystander effects of cancer cell lines transduced with the multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster and synergistic enhancement by hydroxyurea.

The multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) can be expressed in human cells with retained enzymatic activity. The cells expressing Dm-dNK exhibit increased sensitivity to several cytotoxic nucleoside analogs. In this study, we further evaluated Dm-dNK as a potential novel suicide gene in combination with (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) as the pr...

متن کامل

Adenovirus-mediated Drosophila melanogaster deoxyribonucleoside kinase mutants combined with gemcitabine harbor a safe cancer treatment profile.

The purpose of this analysis was to investigate the enzyme activity and specificity of adenovirus-mediated Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) mutants in combination with gemcitabine. Compared to herpes simplex type 1 thymidine kinases (HSV-TK) and other known dNKs, this Dm-dNK enzyme has a broader substrate specificity and a higher catalytic rate. We created the Dm-dNK ...

متن کامل

Non-homologous recombination of deoxyribonucleoside kinases from human and Drosophila melanogaster yields human-like enzymes with novel activities.

In antiviral and cancer therapy, deoxyribonucleoside kinases (dNKs) are often the rate-limiting step in activating nucleoside analog (NA) prodrugs into their cytotoxic, phosphorylated forms. We have constructed libraries of hybrid enzymes by non-homologous recombination of the pyrimidine-specific human thymidine kinase 2 and the broad-specificity dNK from Drosophila melanogaster; their low sequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015